

Large Capacity. Small Dimensions.

Rounding out the Honeywell valve line, Honeywell Butterfly Valves give you a compact choice for moving a lot of water in heating, cooling and ventilation control applications. Perfect for chiller and other high-waterflow applications, Honeywell Butterfly Valves let you move as much as 20,000 gallons per minute from a 20 " valve.

Honeywell Butterfly Valves are compact and easy to handle, yet engineered for long-term, reliable performance. The nylon-coated disk squeezes the food-grade resilient rubber seat for tight close-off. Plus, the close-off rating is triple what's been previously available on most models using Honeywell Direct Coupled Actuators!

Best of all, Honeywell has simplified and streamlined the ordering process, so not only can you meet all your valve needs from one source, you'll be able to order them quickly and easily.

Count on Honeywell for a complete line of valves, including new Honeywell Butterfly Valves for high-water-flow HVAC applications.

- Enhanced new line, with easy-tofollow nomenclature and ordering.
- Compact, yet powerful.
- New two-way manually operated valves for end-of-line service, with choice of lever or geared operator.
- Use Honeywell actuators on Butterfly Valves up to 8".

HONEYWELL BUTTERFLY VALVES ARE LOADED WITH BENEFITS

Feature	Benefit
High flow and high close-off	Able to handle high-capacity applications
Compact size	Lighter weight than a globe valve; easier to handle; fits easily into smaller spaces
Pneumatic actuators available in 80 psi	Higher close-off than most butterfly valves in the industry
2", 2-1/ 2" and 3" upgraded to 175 psi, bubble-tight close-off	Three times the close-off potential previously available on Honeywell butterfly valves
Functional OS numbering system	Simplifies product selection
Peroxide-cured EPDM rubber seat	Compliant rubber provides a bubble-tight close-off
Works with a variety of actuators	Gives you the flexibility to choose the most effective actuator for your application
Nylon-coated disk	Offers protection against the elements and reduces operating friction for lower actuator torque requirements and higher close-off ratings
Manual shut-off valves for end-of-line service	Ease of system fill, balancing, shut-off and drainage
Manual shut-off valves have 250 psi close-off	Fits high-rise applications
Temperature range covering chilled and hot water	Cover a wide variety of applications with one valve family
Nylon disk coating and EPDM combination flange gasket/ valve seat	Suitable for closed or open systems with oxygenated water, such as a cooling tower
Corrosion resistant	Durable design for long-term performance
Ultraviolet resistant	Protection in outdoor applications
Floating, modulating control, low and line-volt two-position pneumatic, pneumatic positioner, electro-pneumatic servo	Variety of control interfaces gives you more flexibility
Manual operators are standard	Override valve manually when needed
Manual valves have a choice of operators (wheel or notch lever)	Flexibility to be used as a balancing valve with the notch lever
Extended neck	Allows for 2" of piping insulation
3-way configurations available in globe valve or zone valve porting	Lets you easily match the right pipe configuration to the job
3-way valve assemblies may be field-configured for mixing or diverting applications	Cover a diverse range of applications
Pneumatic positioners and electropneumatic servo interfaces available	Assure position accuracy regardless of supply line

Flanged Bodies, Actuated

Operating Torque, in.-Ib. [Nm]

Pipe Size	Full Cut Disk (...W1Y...)			Under Cut Disk (...V1Y...)		
In. [mm]	Close-Off	2-Way	3-Way	Close-Off	2-Way	3-Way
$\begin{gathered} \stackrel{2}{\mathrm{D}} 50] \end{gathered}$	$\begin{gathered} 175 \mathrm{psid} \\ {[1200 \mathrm{kPa}]} \end{gathered}$	$\begin{aligned} & 126 \\ & {[14]} \end{aligned}$	$\begin{aligned} & 151 \\ & {[17]} \end{aligned}$	Only full cut disk models (high close-off) available in these body sizes		
$\begin{gathered} 2-1 / 2 \\ {[\text { DN65] }} \end{gathered}$		$\begin{aligned} & 150 \\ & {[17]} \end{aligned}$	$\begin{aligned} & 180 \\ & {[20]} \end{aligned}$			
$\begin{gathered} 3 \\ {[\text { DN80] }} \end{gathered}$		$\begin{aligned} & 180 \\ & {[20]} \end{aligned}$	$\begin{aligned} & 216 \\ & {[24]} \end{aligned}$			
$\begin{gathered} 4 \\ {[\mathrm{DN} 100]} \end{gathered}$		$\begin{aligned} & 372 \\ & {[42]} \end{aligned}$	$\begin{gathered} 446 \\ {[50]} \end{gathered}$	$\left[\begin{array}{c} 50 \mathrm{psid} \\ {[345 \mathrm{kPa}]} \end{array}\right.$	$\begin{aligned} & 180 \\ & {[20]} \end{aligned}$	$\begin{aligned} & 216 \\ & {[24]} \end{aligned}$
$\begin{gathered} 5 \\ {[\mathrm{DN125]}} \end{gathered}$		$\begin{aligned} & 468 \\ & {[53]} \end{aligned}$	$\begin{aligned} & 562 \\ & {[64]} \end{aligned}$		$\begin{aligned} & 312 \\ & {[35]} \end{aligned}$	$\begin{aligned} & 374 \\ & \text { [42] } \end{aligned}$
$\begin{gathered} 6 \\ {[\mathrm{DN150]}} \end{gathered}$		$\begin{aligned} & 564 \\ & {[64]} \end{aligned}$	$\begin{aligned} & 677 \\ & {[77]} \end{aligned}$		$\begin{aligned} & 456 \\ & {[52]} \end{aligned}$	$\begin{gathered} 547 \\ {[62]} \end{gathered}$
$\begin{gathered} 8 \\ {[\mathrm{DN200]}} \end{gathered}$		$\begin{aligned} & 1,224 \\ & {[138]} \end{aligned}$	$\begin{aligned} & 1,469 \\ & {[166]} \end{aligned}$		$\begin{aligned} & 564 \\ & {[64]} \end{aligned}$	$\begin{aligned} & 677 \\ & {[77]} \end{aligned}$
$\begin{gathered} 10 \\ {[\mathrm{DN} 250]} \end{gathered}$		$\begin{aligned} & 2,637 \\ & {[298]} \end{aligned}$	$\begin{aligned} & 3,164 \\ & {[358]} \end{aligned}$		$\begin{aligned} & 1,128 \\ & {[127]} \end{aligned}$	$\begin{aligned} & 1,354 \\ & {[153]} \end{aligned}$
$\begin{gathered} 12 \\ {[\text { DN300] }} \end{gathered}$		$\begin{aligned} & 4,132 \\ & {[467]} \end{aligned}$	$\begin{aligned} & 4,958 \\ & {[560]} \end{aligned}$		$\begin{aligned} & 2,074 \\ & {[234]} \end{aligned}$	$\begin{aligned} & 2,489 \\ & {[281]} \end{aligned}$
$\begin{gathered} 14 \\ {[\mathrm{DN} 350]} \end{gathered}$	$\begin{gathered} 150 \mathrm{psid} \\ {[1034 \mathrm{kPa}]} \end{gathered}$	$\begin{aligned} & 5,864 \\ & {[663]} \end{aligned}$	$\begin{aligned} & 7,037 \\ & {[796]} \end{aligned}$		$\begin{aligned} & 3,000 \\ & {[339]} \end{aligned}$	$\begin{aligned} & 3,600 \\ & {[407]} \end{aligned}$
$\begin{gathered} 16 \\ {[\text { DN400] }} \end{gathered}$		$\begin{aligned} & 8,182 \\ & {[924]} \end{aligned}$	$\left[\begin{array}{c} 9,818 \\ {[1,109]} \end{array}\right.$		$\begin{aligned} & 3,880 \\ & {[438]} \end{aligned}$	$\begin{aligned} & 4,656 \\ & {[526]} \end{aligned}$
$\begin{gathered} 18 \\ {[\mathrm{DN} 450]} \end{gathered}$		$\begin{aligned} & 10,819 \\ & {[1,222]} \end{aligned}$	$\begin{aligned} & 12,983 \\ & {[1,466]} \end{aligned}$		$\begin{aligned} & 4,788 \\ & {[541]} \end{aligned}$	$\begin{aligned} & 5,746 \\ & {[649]} \end{aligned}$
$\begin{gathered} 20 \\ {[\text { DN500] }} \end{gathered}$		$\begin{aligned} & 14,091 \\ & {[1,592]} \end{aligned}$	$\begin{aligned} & 16,909 \\ & {[1,910]} \end{aligned}$		$\begin{aligned} & 6,243 \\ & {[705]} \end{aligned}$	$\begin{aligned} & 7,492 \\ & {[846]} \end{aligned}$

Pipe Size
In. [mm] ...2A/B ... 2

$\stackrel{2}{\stackrel{2}{[D N 50]}}$	$\begin{gathered} 175 \\ {[1,206]} \end{gathered}$
$\begin{gathered} 2-1 / 2 \\ {[\text { DN65] }} \end{gathered}$	
$\begin{gathered} 3 \\ {[\text { DN80] }} \end{gathered}$	
$\begin{gathered} 4 \\ {[\text { DN100] }} \end{gathered}$	
$\begin{gathered} 5 \\ {[\text { DN125] }} \end{gathered}$	$\left[\begin{array}{c} 175^{\star} \\ {[1,206]} \end{array}\right.$
$\stackrel{6}{[\mathrm{DN150}}$	
$\begin{gathered} 8 \\ {[\mathrm{DN200]}} \end{gathered}$	$\begin{gathered} 50^{\star} \\ {[345]} \end{gathered}$
$\begin{gathered} 10 \\ {[\mathrm{DN250]}} \end{gathered}$	Not
$\begin{gathered} 12 \\ {[\text { DN300] }} \end{gathered}$	
$\begin{gathered} 14 \\ {[D N 350]} \end{gathered}$	
$\begin{gathered} 16 \\ {[\mathrm{DN} 400]} \end{gathered}$	
$\begin{gathered} 18 \\ {[\mathrm{DN450]}} \end{gathered}$	
$\begin{gathered} 20 \\ {[\text { DN500] }} \end{gathered}$	

* Dual actuators

2-WAY

2-way valve with NEMA 4-4x industrialgrade actuator, with integral heater and manual override (VFF2...4A/4B/XA/XB)

Maximum Available Close-Off by Actuator Code, psi [kPa]

Body Dimensions, inches [mm]. See figures A-F

Pipe Size	D	R	F	T	C (3-Way)		Flange Bo	
In. [mm]	I.D.	Radius	Neck	Thickness	Face-C/L	No.	C/L Dia.	Thread
$\begin{gathered} 2 \\ {[\text { DN50] }} \end{gathered}$	$\stackrel{2}{2}$	$\begin{aligned} & 2-/ 4 \\ & {[58]} \end{aligned}$	$\begin{aligned} & 5-1 / 2 \\ & {[140]} \end{aligned}$	$\begin{aligned} & 1-5 / 8 \\ & {[41]} \end{aligned}$	$\begin{aligned} & 4-1 / 2 \\ & {[114]} \end{aligned}$	4	$\begin{aligned} & 4-3 / 4 \\ & {[121]} \end{aligned}$	5/8-11
$\begin{gathered} 2-1 / 2 \\ {[\text { DN65] }} \end{gathered}$	$\begin{gathered} 2-1 / 2 \\ {[64]} \end{gathered}$	$\begin{aligned} & 2.57 \\ & {[65]} \end{aligned}$	$\begin{gathered} 6 \\ {[152]} \end{gathered}$	1-3/4	$\begin{gathered} 5 \\ {[127]} \end{gathered}$		$\begin{aligned} & 5-1 / 2 \\ & {[140]} \end{aligned}$	
$\begin{gathered} 3 \\ \text { [DN80] } \end{gathered}$	$\begin{gathered} 3 \\ {[76]} \end{gathered}$	$\begin{gathered} 2-1 / 4 \\ {[71]} \end{gathered}$	$\begin{aligned} & 6-1 / 4 \\ & {[159]} \end{aligned}$	[45]	$\begin{aligned} & 5-1 / 2 \\ & {[140]} \end{aligned}$		$\begin{gathered} 6 \\ {[152]} \end{gathered}$	
$\begin{gathered} \stackrel{4}{4} \\ {[\text { DN100] }} \end{gathered}$	$\begin{gathered} 4 \\ {[102]} \end{gathered}$	$\begin{gathered} 4.09 \\ {[104]} \end{gathered}$	$\begin{gathered} 7 \\ {[178]} \end{gathered}$	$\begin{gathered} 2 \\ {[51]} \end{gathered}$	$\begin{aligned} & 6-1 / 2 \\ & {[165]} \end{aligned}$	8	$\begin{aligned} & 7-1 / 2 \\ & {[191]} \end{aligned}$	
$\begin{gathered} 5 \\ {[\text { DN125] }} \end{gathered}$	$\begin{gathered} 5 \\ {[127]} \end{gathered}$	$\begin{gathered} 4.61 \\ {[117]} \end{gathered}$	$\begin{aligned} & 7-1 / 2 \\ & {[191]} \end{aligned}$	2-1/8	$\begin{aligned} & 7-1 / 2 \\ & {[191]} \end{aligned}$		$\begin{aligned} & 8-1 / 2 \\ & {[216]} \end{aligned}$	3/4-10
$\begin{gathered} \stackrel{6}{[D N 150]} \end{gathered}$	$\begin{aligned} & 5-3 / 4 \\ & {[146]} \end{aligned}$	$\begin{gathered} 5 \\ {[129]} \end{gathered}$	$\begin{gathered} 8- \\ {[203]} \end{gathered}$	[54]	$\begin{gathered} 8 \\ {[203]} \end{gathered}$		$\begin{gathered} 9-1 / 2 \\ {[241]} \end{gathered}$	
$\begin{gathered} 8 \\ {[\text { DN200] }} \end{gathered}$	$\begin{aligned} & 7-3 / 4 \\ & {[197]} \end{aligned}$	$\begin{gathered} 6 \\ {[154]} \end{gathered}$	$\begin{aligned} & 9-1 / 2 \\ & {[241]} \end{aligned}$	2-1/2	$\begin{gathered} 9 \\ {[229]} \end{gathered}$		$\begin{gathered} 11-3 / 4 \\ {[298]} \end{gathered}$	
$\begin{gathered} 10 \\ \text { [DN250] } \end{gathered}$	$\begin{aligned} & 9-3 / 4 \\ & {[248]} \end{aligned}$	$\begin{aligned} & 7-1 / 4 \\ & {[195]} \end{aligned}$	$\begin{gathered} 10-3 / 4 \\ {[273]} \end{gathered}$	[64]	$\begin{gathered} 11 \\ {[279]} \end{gathered}$	12	$\begin{gathered} 14-1 / 4 \\ {[362]} \end{gathered}$	7/8-9
$\begin{gathered} 12 \\ {[\text { DN300] }} \end{gathered}$	$\begin{aligned} & 11-3 / 4 \\ & {[298]} \end{aligned}$	$\begin{gathered} 9 \\ {[229]} \end{gathered}$	$\begin{aligned} & 12-1 / 4 \\ & {[311]} \end{aligned}$	3	$\begin{gathered} 12 \\ {[305]} \end{gathered}$		$\begin{gathered} 17 \\ {[432]} \end{gathered}$	
$\begin{gathered} 14 \\ \text { [DN350] } \end{gathered}$	$\begin{aligned} & 13-1 / 4 \\ & {[337]} \end{aligned}$	$\begin{gathered} 9.93 \\ {[252]} \end{gathered}$	$\begin{gathered} 13-5 / 8 \\ {[346]} \end{gathered}$	[76]	$\begin{gathered} 14 \\ {[356]} \end{gathered}$		$\begin{gathered} 18-3 / 4 \\ {[476]} \end{gathered}$	1-8
$\begin{gathered} 16 \\ \text { [DN400] } \end{gathered}$	$\begin{aligned} & 15-1 / 4 \\ & {[387]} \end{aligned}$	$\begin{aligned} & 11-/ 4 \\ & {[287]} \end{aligned}$	$\begin{gathered} 14-3 / 4 \\ {[375]} \end{gathered}$	$\begin{gathered} 4 \\ {[102]} \end{gathered}$	$\begin{gathered} 15 \\ {[381]} \end{gathered}$	16	$\begin{gathered} 21-1 / 4 \\ {[540]} \end{gathered}$	
$\begin{gathered} 18 \\ \text { [DN450] } \end{gathered}$	$\begin{aligned} & 17-1 / 4 \\ & {[438]} \end{aligned}$	$\begin{aligned} & 12.16 \\ & {[309]} \end{aligned}$	$\begin{gathered} 16 \\ {[406]} \end{gathered}$	$\begin{aligned} & 4-1 / 4 \\ & {[108]} \end{aligned}$	$\begin{aligned} & 16-1 / 2 \\ & {[419]} \end{aligned}$		$\begin{gathered} 22-3 / 4 \\ {[578]} \end{gathered}$	$11 / 8-7$
$\begin{gathered} 20 \\ \text { [DN500] } \end{gathered}$	$\begin{aligned} & 19-1 / 4 \\ & {[489]} \end{aligned}$	$\begin{gathered} 14 \\ {[356]} \end{gathered}$	$\begin{gathered} 17-1 / 4 \\ {[438]} \end{gathered}$	$\begin{gathered} 5 \\ {[127]} \end{gathered}$	$\begin{gathered} 18 \\ {[457]} \end{gathered}$	20	$\begin{gathered} 25 \\ {[635]} \end{gathered}$	

* Larger valve bodies and high close-off rat Where dimensions overlap, the larger valu

3-WAY

Selected Actuator Heights*, In. [mm]
Way Valve, by Actuator Code 3-Way Valve Assembly, by Actuator Code

A~XB	...8P	...PP	...XR/XS	...PR/PS	...2A/B	...2C/D/E	...4A/XB	...8P	...PP	...XR/XS	...PR/PS
$\begin{aligned} & -1 / 4 \\ & 70] \end{aligned}$	$\begin{gathered} 3 \\ {[79]} \end{gathered}$	$\begin{gathered} 6-/ 4 \\ {[160]} \end{gathered}$	$\begin{gathered} 4-/ 4 \\ {[109]} \end{gathered}$	$\begin{aligned} & 10-/ 4 \\ & {[262]} \end{aligned}$	$\begin{gathered} 3 \\ {[76]} \end{gathered}$		$\begin{aligned} & 6-1 / 4 \\ & {[170]} \end{aligned}$	$\begin{gathered} 3 \\ {[79]} \end{gathered}$	$\begin{gathered} 6-/ 4 \\ {[160]} \end{gathered}$	$\begin{gathered} 4-/ 4 \\ {[109]} \end{gathered}$	$\begin{aligned} & 10-/ 4 \\ & {[262]} \end{aligned}$
						$\begin{gathered} 3 \\ {[76]} \end{gathered}$		$\begin{aligned} & 6-1 / 8 \\ & {[175]} \end{aligned}$	$\begin{gathered} 10 \\ {[254]} \end{gathered}$	$\begin{gathered} 5-/ 8 \\ {[132]} \end{gathered}$	$\begin{aligned} & 11-/ 8 \\ & {[285]} \end{aligned}$
									$\begin{aligned} & 10-/ 8 \\ & {[257]} \end{aligned}$	$\begin{aligned} & 5-1 / 2 \\ & {[141]} \end{aligned}$	$\begin{gathered} 11-1 / 2 \\ {[293]} \end{gathered}$
	$\begin{aligned} & 6-1 / 8 \\ & {[175]} \end{aligned}$	$\begin{gathered} 10 \\ {[254]} \end{gathered}$	$\begin{gathered} 5-/ 8 \\ {[132]} \end{gathered}$	$\begin{aligned} & 11-/ 8 \\ & {[285]} \end{aligned}$		$\begin{aligned} & 11-1 / 4 \\ & {[300]} \end{aligned}$				$\begin{gathered} 6-1 / 8 \\ {[176]} \end{gathered}$	$\begin{gathered} 12-1 / 8 \\ {[328]} \end{gathered}$
$\begin{aligned} & 3-18 \\ & 066] \end{aligned}$		$\begin{aligned} & 10-/ 8 \\ & {[257]} \end{aligned}$			$\begin{gathered} 11-1 / 4 \\ {[300]} \end{gathered}$		$\begin{gathered} 8-/ 8 \\ {[206]} \end{gathered}$			$\begin{aligned} & 7-1 / 4 \\ & {[196]} \end{aligned}$	$\begin{aligned} & 13-1 / 4 \\ & {[349]} \end{aligned}$
			$\begin{aligned} & 5-1 / 2 \\ & {[141]} \end{aligned}$	$\begin{gathered} 11-1 / 2 \\ {[293]} \end{gathered}$						9-/8	15-/8
			$\begin{aligned} & 6-1 / 8 \\ & {[176]} \end{aligned}$	$\begin{gathered} 12-1 / 8 \\ {[328]} \end{gathered}$						238]	[391]
			$\begin{aligned} & 7-1 / 4 \\ & {[196]} \end{aligned}$	$\begin{aligned} & 13-1 / 4 \\ & {[349]} \end{aligned}$						$\begin{gathered} 11-1 / 8 \\ {[295]} \end{gathered}$	$\begin{aligned} & 17-1 / 8 \\ & {[447]} \end{aligned}$
$\begin{array}{r} 1 / 4 \\ -24] \end{array}$			$\begin{gathered} 9-/ 8 \\ {[238]} \end{gathered}$	$\begin{aligned} & 15-/ 8 \\ & {[391]} \end{aligned}$			$\begin{aligned} & 8-1 / 4 \\ & {[224]} \end{aligned}$			$\begin{aligned} & 13-/ 2 \\ & {[342]} \end{aligned}$	$\begin{aligned} & 19-1 / 2 \\ & {[495]} \end{aligned}$
$\begin{aligned} & 16 \\ & 106] \end{aligned}$			$\begin{gathered} 11-1 / 8 \\ {[295]} \end{gathered}$	$\begin{aligned} & 17-1 / 8 \\ & {[447]} \end{aligned}$			$\begin{gathered} 16 \\ {[406]} \end{gathered}$				
			$\begin{aligned} & 13-/ 2 \\ & {[342]} \end{aligned}$	$\begin{aligned} & 19-1 / 2 \\ & {[495]} \end{aligned}$							

ings require higher torque. Largest dimensions are shown for installation planning. ie represents dual, or the larger actuators.

3-way valve with NEMA $4 x$ industrial-grade actuator, with integral heater and manual override (VFF...4A/4B/XA/XB)

				2-Way Electrically-Actu				
				Non-Spring Return				
				Floating				N
	Actuator Features			MN6134A1003	Industrial	uators	MN7234A2008	
				NEMA 2	NEMA 4X	NEMA 4	NEMA 2	I
	24 Vac			-			-	
	120 Vac				-	\bullet		
	2-Position Control			-	-	-	-	
	Floating Control			24 Vac	120 Vac	120 Vac	24 Vac	
	2-10 Vdc Control						-	
	$0-10 \mathrm{Vdc}$ Control						-	
	4-20 mA Control						-	
	Manual Override				-	-		
	Conduit Connection			-	-	\bullet	-	
	Waterproof				-	-		
	Corrosion Resistant				-	-		
	Anti-Condensate Heater				-	-		
	Spring Return							
Valve Size (inches)	$\begin{gathered} \text { Close-Off } \\ \text { (psid) } \end{gathered}$	$\begin{gathered} \text { Cv [kvs] } \\ @ 60^{\circ} \end{gathered}$	$\begin{gathered} \text { Cv [kvs] } \\ @ 90^{\circ} \\ \hline \end{gathered}$					F
2	175	$\begin{gathered} 61 \\ {[53]} \end{gathered}$	$\begin{gathered} 144 \\ {[125]} \end{gathered}$	VFF2FW1Y2A	VFF2FW1YXA		VFF2FW 1Y2B	VF
	250							
2-1/2	175	$\begin{aligned} & 107 \\ & {[93]} \end{aligned}$	$\begin{gathered} 282 \\ {[244]} \end{gathered}$	VFF2GW1Y2A	VFF2GW1YXA		VFF2GW1Y2B	VFI
	250							
3	175	$\begin{gathered} 154 \\ {[133]} \end{gathered}$	$\begin{gathered} 461 \\ {[399]} \end{gathered}$	VFF2HW1Y2A	VFF2HW1YXA		VFF2HW1Y2B	VF
	250							
4	50	$\begin{gathered} 274 \\ {[237]} \end{gathered}$	$\begin{gathered} 841 \\ {[727]} \end{gathered}$	VFF2JV1Y2A	VFF2JV1YXA		VFF2JV1Y2B	VF
	175			VFF2JW1Y2A	VFF2JW1YXA		VFF2JW1Y2B	VF
	250							
5	50	$\begin{gathered} 428 \\ {[370]} \end{gathered}$	$\begin{gathered} 1376 \\ {[1,190]} \end{gathered}$	VFF2KV1Y2A*	VFF2KV1YXA		VFF2KV1Y2B*	VF
	175			VFF2KW1Y2A	VFF2KW1YXA		VFF2KW1Y2B	VF
6	50	$\begin{gathered} 567 \\ {[490]} \end{gathered}$	$\begin{gathered} 1,850 \\ {[1,600]} \end{gathered}$	VFF2LW1Y2A**	VFF2LV1YXA		VFF2LW1Y2B**	VF
	175			VFF2LW1Y2A	VFF2LW1YXA		VFF2LW1Y2B	VF
	250							
8	50	$\begin{aligned} & 1,081 \\ & {[935]} \end{aligned}$	$\begin{gathered} 3,316 \\ {[2,868]} \end{gathered}$	VFF2MV1Y2A	VFF2MV1YXA		VFF2MV1Y2B	VF
	175				VFF2MW1YXA			VFI
	250							
10	50	$\begin{gathered} 1,710 \\ {[1,479]} \end{gathered}$	$\begin{gathered} 5,430 \\ {[4,697]} \end{gathered}$		VFF2NV1YXA			VF
	175				VFF2NW1YXA			VF
	250							
12	50	$\begin{gathered} 2,563 \\ {[2,217]} \end{gathered}$	$\begin{gathered} 8,077 \\ {[6,987]} \end{gathered}$		VFF2PV1YXA			VF
	175				VFF2PW1YXA			VF
	250							
14	50	$\begin{gathered} 3,384 \\ {[2,927]} \end{gathered}$	$\begin{aligned} & 10,538 \\ & {[9,115]} \end{aligned}$		VFF2RV1YXA			VF
	150				VFF2RW1YXA			VF
	250							
16	50	$\begin{gathered} 4,483 \\ {[3,878]} \end{gathered}$	$\begin{gathered} 13,966 \\ {[12,081]} \end{gathered}$		VFF2SV1YXA			VF
	150					VFF2SW1Y4A		
	250							
18	50	$\begin{gathered} 5,736 \\ {[4,962]} \end{gathered}$	$\begin{gathered} 17,214 \\ {[14,890]} \end{gathered}$		VFF2TV1YXA			VF
	150					VFF2TW1Y4A		
	250							
20	50	$\begin{gathered} 7,144 \\ {[6,180]} \end{gathered}$	$\begin{gathered} 22,339 \\ {[19,323]} \end{gathered}$			VFF2UV1Y4A		
	150					VFF2UW1Y4A		
	250							

*Chilled water service only. ** Use full cut valves - requires same actuator torque.

Valve Size	Cv [kvs] at Disk Rotation								
	0°	10°	20°	30°	40°	50°	60°	70°	80°
2" [DN50]	0 [0]	1 [1]	7 [6]	16 [14]	27 [23]	43 [37]	61 [53]	84 [72]	114 [98]
3" [DN65]	0 [0]	2 [1]	11 [10]	24 [21]	43 [37]	67 [58]	107 [92]	163 [140]	223 [192
3" [DN80]	0 [0]	2 [2]	15 [13]	35 [30]	61 [53]	96 [83]	154 [132]	267 [230]	364 [313
4" [DN100]	0 [0]	3 [3]	27 [23]	62 [53]	109 [94]	171 [147]	274 [236]	496 [427]	701 [603
5" [DN125]	0 [0]	5 [4]	43 [37]	98 [84]	170 [146]	268 [231]	428 [368]	775 [667]	1,146 [98
6" [DN150]	0 [0]	6 [5]	56 [48]	129 [111]	225 [194]	354 [304]	567 [488]	1,025 [882]	1,542 [1,32
8" [DN200]	0 [0]	12 [10]	102 [88]	241 [207]	421 [362]	680 [585]	1,081 [930]	1,862 [1,601]	2,842 [2,4
10" [DN250]	0 [0]	19 [16]	162 [139]	382 [329]	667 [574]	1,076 [925]	1,710 [1,471]	2,948 [2,535]	4,525 [3,89
12" [DN300]	0 [0]	27 [23]	235 [202]	555 [477]	1,005 [864]	1,594 [1,371]	2,563 [2,204]	4,393 [3,778]	6,731 [5,78
14" [DN350]	0 [0]	34 [29]	299 [257]	756 [650]	1,320 [1,135]	2,149 [1,848]	3,384 [2,910]	5,939 [5,108]	9,974 [8,5]
16" [DN400]	0 [0]	45 [39]	397 [341]	1,001 [861]	1,749 [1,504]	2,847 [2,448]	4,483 [3,855]	7,867 [6,766]	11,761 [10,
18" [DN450]	0 [0]	58 [50]	507 [436]	1,281 [1,102]	2,237 [1,924]	3,643 [3,133]	5,736 [4,933]	10,065 [8,656]	14,496 [12,
20" [DN500]	0 [0]	72 [62]	632 [544]	1,595 [1,372]	2,786 [2,396]	4,536 [3,901]	7,144 [6,144]	12,535 [10,780]	18,812 [16,

Iated Control Butterfly Valves

Resilient-Seat, Nylon 11-coated Disk, Lugged Fittings

F2FW1YXB		VFF2FW1Y2C	VFF2FW1Y2E	VFF2FW1Y2D		
					VFF2FW2YLX	VFF2FW2YGX
=2GW1YXB		VFF2GW1Y2C	VFF2GW1Y2E	VFF2GW1Y2D		
					VFF2GW2YLX	VFF2GW2YGX
F2HW1YXB		VFF2HW1Y2C	VFF2HW1Y2E	VFF2HW1Y2D		
					VFF2HW2YLX	VFF2HW2YGX
F2JV1YXB		VFF2JV1Y2C	VFF2JV1Y2E	VFF2JV1Y2D		
F2JW1YXB						
					VFF2JW2YLX	VFF2JW2YGX
F2KV1YXB		VFF2KV1Y2C*	VFF2KV1Y2E*	VFF2KV1Y2D*		
F2KW1YXB						
					VFF2KW2YLX	VFF2KW2YGX
F2LV1YXB						
F2LW1YXB						
					VFF2LW2YLX	VFF2LW2YGX
F2MV1YXB						
=2MW1YXB						
					VFF2MW2YLX	VFF2MW2YGX
F2NV1YXB						
F2NW1YXB						
					VFF2NW2YLX	VFF2NW2YGX
F2PV1YXB						
F2PW1YXB						
					VFF2PW2YLX	VFF2PW2YGX
F2RV1YXB						
F2RW1YXB						
						VFF2RW2YGX
F2SV1YXB						
	VFF2SW1Y4B					
						VFF2SW2YGX
F2TV1YXB						
	VFF2TW1Y4B					
						VFF2TW2YGX
	VFF2UV1Y4B					
	VFF2UW1Y4B					
						VFF2UW2YGX

	90°
	$144[124]$
	$282[243]$
	$461[397]$
	$841[723]$
$1,376[1,183]$	
$1,850[1,591]$	
	$3,316[2,852]$
	$5,430[4,670]$
5$]$	$8,077[6,946]$
7$]$	$13,538[9,063]$
8$]$	$22,366[12,011]$

When a Butterfly Valve starts moving, the disc is still in the seat until around 7° or 8°. As the disc comes out of the seat, the curve climbs fairly steeply until about 20°. After that, the curve follows the equal percentage curve very closely until around 60°. At that point you've got nearly full flow and from there on precise control is hard to achieve (the curve starts to flatten back out).

VFF Flow Characteristics

Actuator Features
24 Vac
120 Vac
2-Position Control
Floating Control
2-10 Vdc Control
$0-10 \mathrm{Vdc}$ Control
4-20 mA Control
Manual Override
Conduit Connection
Watertight
Corrosion Resistant
Anti-Condensate Heater
Spring Return

Valve Size (inches)	Close-Off (psid)	$\begin{gathered} \text { Cv [kvs] } \\ @ 60^{\circ} \end{gathered}$	$\begin{gathered} \text { Cv [kvs] } \\ @ 90^{\circ} \end{gathered}$
2	175	61 [53]	144 [125]
2-1/2	175	107 [93]	282 [244]
3	175	154 [133]	461 [399]
4	50	$\begin{gathered} 274 \\ {[237]} \end{gathered}$	$\begin{gathered} 841 \\ {[727]} \end{gathered}$
	175		
5	50	$\begin{gathered} 428 \\ {[370]} \end{gathered}$	$\begin{gathered} 1,376 \\ {[1,190]} \end{gathered}$
	175		
6	50	$\begin{gathered} 567 \\ {[490]} \end{gathered}$	$\begin{gathered} 1,850 \\ {[1,600]} \end{gathered}$
	175		
8	50	$\begin{aligned} & 1,081 \\ & {[935]} \end{aligned}$	$\begin{gathered} 3,316 \\ {[2,868]} \end{gathered}$
	175		
10	50	$\begin{gathered} 1,710 \\ {[1,479]} \end{gathered}$	$\begin{gathered} 5,430 \\ {[4,697]} \end{gathered}$
	175		
12	50	$\begin{gathered} 2,563 \\ {[2,217]} \end{gathered}$	$\begin{gathered} 8,077 \\ {[6,987]} \end{gathered}$
	175		
14	50	$\begin{gathered} 3,384 \\ {[2,927]} \end{gathered}$	$\begin{aligned} & 10,538 \\ & {[9,115]} \end{aligned}$
	150		
16	50	$\begin{gathered} 4,483 \\ {[3,878]} \end{gathered}$	$\begin{gathered} 13,966 \\ {[12,081]} \end{gathered}$
	150		
18	50	$\begin{gathered} 5,736 \\ {[4,962]} \end{gathered}$	$\begin{gathered} 17,214 \\ {[14,890]} \end{gathered}$
	150		
20	50	$\begin{gathered} 7,144 \\ {[6,180]} \end{gathered}$	$\begin{gathered} 22,339 \\ {[19,323]} \end{gathered}$
	150		
Valve Size (inches)	Close-Off (psid)	Cv [kvs] @ 60°	$\begin{gathered} \text { Cv [kvs] } \\ @ 90^{\circ} \end{gathered}$
2	175	61 [53]	144 [125]
2-1/2	175	107 [93]	282 [244]
3	175	154 [133]	461 [399]
4	50	$\begin{gathered} 274 \\ {[237]} \end{gathered}$	$\begin{gathered} 841 \\ {[727]} \end{gathered}$
	175		
5	50	$\begin{gathered} 428 \\ {[370]} \end{gathered}$	$\begin{gathered} 1,376 \\ {[1,190]} \end{gathered}$
	175		
6	50	$\begin{gathered} 567 \\ {[490]} \end{gathered}$	$\begin{gathered} 1,850 \\ {[1,600]} \end{gathered}$
	175		
8	50	$\begin{aligned} & 1,081 \\ & {[935]} \end{aligned}$	$\begin{gathered} 3,316 \\ {[2,868]} \end{gathered}$
	175		
10	50	$\begin{gathered} 1,710 \\ {[1,479]} \end{gathered}$	$\begin{gathered} 5,430 \\ {[4,697]} \end{gathered}$
	175		
12	50	$\begin{gathered} 2,563 \\ {[2,217]} \end{gathered}$	$\begin{gathered} 8,077 \\ {[6,987]} \end{gathered}$
	175		
14	50	$\begin{gathered} 3,384 \\ {[2,927]} \end{gathered}$	$\begin{aligned} & 10,538 \\ & {[9,115]} \end{aligned}$
	150		
16	50	$\begin{gathered} 4,483 \\ {[3,878]} \end{gathered}$	$\begin{gathered} 13,966 \\ {[12,081]} \end{gathered}$
	150		
18	50	$\begin{gathered} 5,736 \\ {[4,962]} \end{gathered}$	$\begin{gathered} 17,214 \\ {[14,890]} \end{gathered}$
	150		
20	50	$\begin{gathered} 7,144 \\ {[6,180]} \end{gathered}$	$\begin{gathered} 22,339 \\ {[19,323]} \end{gathered}$
	150		

(inches)

 Close-OfSpring Return, N.C.(A-port default)/N.O.

lodulating

Industrial Actuators
NEMA 4X NEMA 4

- -

Valve Only End-of-Line Service
ylon 11-Coated Disks, Lugged Fittings, A-B-AB (Globe Valve) Porting
=3FW1YXB =3GW1YXB =3HW1YXB F3JV1YXB F3JW1YXB F3KV1YXB =3KW1YXB F3LV1YXB F3LW1YXB =3MV1YXB $=3 \mathrm{MW} 1 \mathrm{YXB}$ F3NV1YXB =3NW1YXB F3PV1YXB =3PW1YXB F3RV1YXB

F3SV1YXB

	VFF3FW1Y2C	VFF3FW1Y2E	VFF3FW1Y2D
	VFF3GW1Y2C	VFF3GW12E	VFF3GW1Y2D
	VFF3HW1Y2C	VFF3HW1Y2E	VFF3HW1Y2D
	VFF3JV1Y2C	VFF3JV1Y2E	VFF3JV1Y2D
	VFF3KV1Y2C**	VFF3KV1Y2E**	VFF3KV1Y2D**
VFFF3RV1Y4B			
VF3RW1Y4B			
VFF3SV1Y4B			
VFF3SW1Y4B			
VFF3TV1Y4B			
VFF3TW1Y4B			
VFF3U1Y4B			
VFF3UW1Y4B			

Use A Pair Of 2-Way Valves With Standard Flanged Tee

Seat, Nylon 11-Coated Disks, Lugged Fittings, A-AB-B Porting

=6FW1YXB		VFF6FW1Y2C	VFF6FW1Y2E	VFF6FW1Y2D
=6GW1YXB		VFF6GW1Y2C	VFF6GW1Y2E	VFF6GW1Y2D
=6HW1YXB		VFF6HW1Y2C	VFF6HW1Y2E	VFF6HW1Y2D
F6JV1YXB		VFF6JV1Y2C	VFF6JV1Y2E	VFF6JV1Y2D
F6JW1YXB				
F6KV1YXB		VFF6KV1Y2C**	VFF6KV1Y2E**	VFF6KV1Y2D**
=6KW1YXB				
F6LV1YXB				
F6LW1YXB				
=6MV1YXB				
=6MW1YXB				
F6NV1YXB				
=6NW1YXB				
F6PV1YXB				
=6PW1YXB				
F6RV1YXB	VFF6RV1Y4B			
	VFF6RW1Y4B			
F6SV1YXB	VFF6SV1Y4B			
	VFF6SW1Y4B			
	VFF6TV1Y4B			
	VFF6TW1Y4B			
	VFF6UV1Y4B			
	VFF6UW1Y4B			

Use A Pair Of 2-Way Valves With Standard Flanged Tee

	Spring Return			-	-	-	-	-
Valve Size (inches)	$\begin{gathered} \text { Close-Off } \\ \text { (psid) } \end{gathered}$	$\begin{gathered} \text { Cv [kvs] } \\ @ 60^{\circ} \end{gathered}$	$\begin{gathered} \text { Cv [kvs] } \\ @ 90^{\circ} \end{gathered}$					Resilient-
2	175	61 [53]	144 [125]	VFF1FW1Y8P	VFF1FW1YPP	VFF1FW1YXS	VFF1FW1YCS	VFF1FW1Y
2-1/2	175	107 [93]	282 [244]	VFF1GW1Y8P	VFF1GW1YPP	VFF1GW1YXS	VFF1GW1YCS	VFF1GW1Y
3	175	154 [133]	461 [399]	VFF1HW1Y8P	VFF1HW1YPP	VFF1HW1YXS	VFF1HW1YCS	VFF1HW1Y
4	50	$\begin{gathered} 274 \\ {[237]} \end{gathered}$	$\begin{gathered} 841 \\ {[727]} \end{gathered}$	VFF1JV1Y8P	VFF1JV1YPP	VFF1JV1YXS	VFF1JV1YCS	VFF1JV1YE
	175			VFF1JW1Y8P	VFF1JW1YPP	VFF1JW1YXS	VFF1JW1YCS	VFF1JW1Y
5	50	$\begin{gathered} 428 \\ {[370]} \end{gathered}$	$\begin{gathered} 1,376 \\ {[1,190]} \end{gathered}$	VFF1KV1Y8P	VFF1KV1YPP	VFF1KV1YXS	VFF1KV1YCS	VFF1KV1Y
	175			VFF1KW1Y8P	VFF1KW1YPP	VFF1KW1YXS	VFF1KW1YCS	VFF1KW1Y
6	50	$\begin{gathered} 567 \\ {[490]} \end{gathered}$	$\begin{gathered} 1,850 \\ {[1,600]} \end{gathered}$	VFF1KW1Y8P	VFF1KW1YPP	VFF1LV1YXS	VFF1LV1YCS	VFF1LV1YE
	175			VFF1KW1Y8P	VFF1KW1YPP	VFF1LW1YXS	VFF1LW1YCS	VFF1LW1Y
8	50	$\begin{aligned} & 1,081 \\ & {[935]} \end{aligned}$	$\begin{gathered} 3,316 \\ {[2,868]} \end{gathered}$	VFF1KV1Y8P	VFF1KV1YPP	VFF1MV1YXS	VFF1MV1YCS	VFF1MV1Y
	175			VFF1KW1Y8P	VFF1KW1YPP	VFF1MW1YXS	VFF1MW1YCS	VFF1MW1Y
10	50	$\begin{gathered} 1,710 \\ {[1,479]} \end{gathered}$	$\begin{gathered} 5,430 \\ {[4,697]} \end{gathered}$	VFF1KV1Y8P	VFF1KV1YPP	VFF1NV1YXS	VFF1NV1YCS	VFF1NV1Y
	175					VFF1NW1YXS	VFF1NW1YCS	VFF1NW1Y
12	50	$\begin{gathered} 2,563 \\ {[2,217]} \end{gathered}$	$\begin{gathered} 8,077 \\ {[6,987]} \end{gathered}$			VFF1PV1YXS	VFF1PV1YCS	VFF1PV1Y
	175					VFF1PW1YXS	VFF1PW1YCS	VFF1PW1Y
14	50	$\begin{gathered} 3,384 \\ {[2,927]} \end{gathered}$	$\begin{aligned} & 10,538 \\ & {[9,115]} \end{aligned}$			VFF1RV1YXS	VFF1RW1YCS	VFF1RV1Y
	150*					VFF1RW1YXS	VFF1RW1YCS	VFF1RW1Y
16	50	$\begin{gathered} 4,483 \\ {[3,878]} \end{gathered}$	$\begin{gathered} 13,966 \\ {[12,081]} \end{gathered}$			VFF1SV1YXS	VFF1SV1YCS	VFF1SV1Y
	150*					VFF1SW1YXS	VFF1SW1YCS	VFF1SW1Y
18	50	$\begin{gathered} 5,736 \\ {[4,962]} \end{gathered}$	$\begin{gathered} 17,214 \\ {[14,890]} \end{gathered}$			VFF1TV1YXS	VFF1TV1YCS	VFF1TV1Y
	150*					VFF1TW1YXS	VFF1TW1YCS	VFF1TW1Y
20	50	$\begin{gathered} 7,144 \\ {[6,180]} \\ \hline \end{gathered}$	$\begin{gathered} 22,339 \\ {[19,323]} \\ \hline \end{gathered}$			VFF1UV1YXS	VFF1UV1YCS	VFF1UV1Y
	150*					VFF1UW1YXS	VFF1UW1YCS	VFF1UW1Y
Valve Size (inches)	Close-Off (psid)	Cv [kvs] @ 60°	Cv [kvs] @ 90°					Resilient-S
2	175	61 [53]	144 [125]	VFF2FW1Y8P	VFF2FW1YPP	VFF2FW1YXS	VFF2FW1YCS	VFF2FW1Y
2-1/2	175	107 [93]	282 [244]	VFF2GW1Y8P	VFF2GW1YPP	VFF2GW1YXS	VFF2GW1YCS	VFF2GW1Y
3	175	154 [133]	461 [399]	VFF2HW1Y8P	VFF2HW1YPP	VFF2HW1YXS	VFF2HW1YCS	VFF2HW1Y
4	50	$\begin{gathered} 274 \\ {[237]} \end{gathered}$	$\begin{gathered} 841 \\ {[727]} \end{gathered}$	VFF2JV1Y8P	VFF2JV1YPP	VFF2JV1YXS	VFF2JV1YCS	VFF2JV1YE
	175			VFF2JW1Y8P	VFF2JW1YPP	VFF2JW1YXS	VFF2JW1YCS	VFF2JW1Y
5	50	$\begin{gathered} 428 \\ {[370]} \end{gathered}$	$\begin{gathered} 1,376 \\ {[1,190]} \end{gathered}$	VFF2KV1Y8P	VFF2KV1YPP	VFF2KV1YXS	VFF2KV1YCS	VFF2KV1Y
	175			VFF2KW1Y8P	VFF2KW1YPP	VFF2KW1YXS	VFF2KW1YCS	VFF2KW1Y
6	50	$\begin{gathered} 567 \\ {[490]} \end{gathered}$	$\begin{gathered} 1,850 \\ {[1,600]} \end{gathered}$	VFF2KW1Y8P	VFF2KW1YPP	VFF2LV1YXS	VFF2LV1YCS	VFF2LV1YE
	175			VFF2KW1Y8P	VFF2KW1YPP	VFF2LW1YXS	VFF2LW1YCS	VFF2LW1Y
8	50	$\begin{aligned} & 1,081 \\ & {[935]} \end{aligned}$	$\begin{gathered} 3,316 \\ {[2,868]} \end{gathered}$	VFF2KV1Y8P	VFF2KV1YPP	VFF2MV1YXS	VFF2MV1YCS	VFF2MV1Y
	175			VFF2KW1Y8P	VFF2KW1YPP	VFF2MW1YXS	VFF2MW1YCS	VFF2MW1Y
10	50	$\begin{gathered} 1,710 \\ {[1,479]} \end{gathered}$	$\begin{gathered} 5,430 \\ {[4,697]} \end{gathered}$	VFF2KV1Y8P	VFF2KV1YPP	VFF2NV1YXS	VFF2NV1YCS	VFF2NV1Y
	175					VFF2NW1YXS	VFF2NW1YCS	VFF2NW1Y
12	50	$\begin{gathered} 2,563 \\ {[2,217]} \end{gathered}$	$\begin{gathered} 8,077 \\ {[6,987]} \end{gathered}$			VFF2PV1YXS	VFF2PV1YCS	VFF2PV1Y
	175					VFF2PW1YXS	VFF2PW1YCS	VFF2PW1Y
14	50	$\begin{gathered} 3,384 \\ {[2,927]} \end{gathered}$	$\begin{array}{r} 10,538 \\ {[9,115]} \\ \hline \end{array}$			VFF2RV1YXS	VFF2RW1YCS	VFF2RV1Y
	150*					VFF2RW1YXS	VFF2RW1YCS	VFF2RW1Y
16	50	$\begin{gathered} 4,483 \\ {[3,878]} \end{gathered}$	$\begin{gathered} 13,966 \\ {[12,081]} \end{gathered}$			VFF2SV1YXS	VFF2SV1YCS	VFF2SV1YI
	150*					VFF2SW1YXS	VFF2SW1YCS	VFF2SW1Y
18	50	$\begin{gathered} 5,736 \\ {[4,962]} \end{gathered}$	$\begin{gathered} 17,214 \\ {[14,890]} \end{gathered}$			VFF2TV1YXS	VFF2TV1YCS	VFF2TV1Y
	150*					VFF2TW1YXS	VFF2TW1YCS	VFF2TW1Y
20	50	$\begin{gathered} 7,144 \\ {[6,180]} \end{gathered}$	$\begin{gathered} 22,339 \\ {[19,323]} \end{gathered}$			VFF2UV1YXS	VFF2UV1YCS	VFF2UV1Y
	150*					VFF2UW1YXS	VFF2UW1YCS	VFF2UW1Y

[^0]
neumatically-Actuated Control Butterfly Valves

Non-Spring Return (Bidirectional)

Seat, Nylon 11-Coated Disk, Lugged Fittings, Normally Open
ES VFF1FW1YPS VFF1FW1YDS
ES VFF1GW1YPS VFF1GW1YDS
ES VFF1HW1YPS VFF1JV1YPS VFF1HWIYDS VFF1JV1YDS VFF1JW1YPS VFF1JW1YDS VFF1KV1YPS VFF1KV1YDS VFF1KW1YPS VFF1KW1YDS VFF1LV1YPS VFF1LV1YDS VFF1LW1YPS VFF1LW1YDS VFF1MV1YPS VFF1MV1YDS VFF1MW1YPS VFF1MW1YDS VFF1NV1YPS VFF1NV1YDS VFF1NW1YPS VFF1NW1YDS VFF1PV1YPS VFF1PV1YDS VFF1PW1YPS VFF1PW1YDS VFF1RV1YPS VFF1RV1YDS VFF1RW1YPS VFF1RW1YDS VFF1SV1YPS VFF1SV1YDS VFF1SW1YPS VFF1SW1YDS VFF1TV1YPS VFF1TV1YDS VFF1TW1YPS VFF1TW1YDS VFF1UV1YPS VFF1UV1YDS VFF1UW1YPS VFF1UW1YDS

Use VFF2 Models For Bi-Directional Pneumatic Operation
eat, Nylon 11-Coated Disk, Lugged Fittings, Normally Closed

VFF2HW1YPS VFF2JV1YPS VFF2JW1YPS VFF2KV1YPS VFF2KW1YPS VFF2LV1YPS VFF2LW1YPS VFF2MV1YPS VFF2MW1YPS VFF2NV1YPS VFF2NW1YPS VFF2PV1YPS VFF2PW1YPS VFF2RV1YPS VFF2RW1YPS VFF2SV1YPS VFF2SW1YPS VFF2TVYYPS VFF2TW1YPS VFF2UV1YPS VFF2UW1YPS

VFF2FW1YPS VFF2FW1YDS VFF2FW1YXR VFF2GW1YPS VFF2GW1YDS VFF2GW1YXR VFF2HW1YDS VFF2JV1YDS VFF2JW1YDS VFF2KV1YDS VFF2KWIYDS VFF2LV1YDS VFF2LW1YDS VFF2MV1YDS VFF2MW1YDS VFF2NV1YDS VFF2NW1YDS VFF2PV1YDS VFF2PW1YDS VFF2RV1YDS VFF2RW1YDS VFF2SV1YDS VFF2SW1YDS VFF2TV1YDS VFF2TW1YDS VFF2UV1YDS VFF2UW1YDS VFF2UW1YXR

VFF2FW1YCR VFF2GW1YCR VFF2HW1YCR VFF2JV1YCR VFF2JW1YCR VFF2KV1YCR VFF2KW1YCR VFF2LV1YCR VFF2LW1YCR VFF2MV1YCR VFF2MW1YCR VFF2NV1YCR VFF2NW1YCR VFF2PV1YCR VFF2PW1YCR VFF2RV1YCR VFF2RW1YCR VFF2SV1YCR VFF2SW1YCR VFF2TV1YCR VFF2TW1YCR VFF2UV1YCR VFF2UW1YCR

VFF2FW1YER VFF2GWYYER VFF2HWIYER VFF2JV1YER VFF2JW1YER VFF2KV1YER VFF2KW1YER VFF2LV1YER VFF2LW1YER VFF2MV1YER VFF2MW1YER VFF2NV1YER VFF2NW1YER VFF2PV1YER VFF2PW1YER VFF2RV1YER VFF2RW1YER VFF2SV1YER VFF2SW1YER VFF2TV1YER VFF2TW1YER VFF2UV1YER VFF2UW1YER

VFF2FW1YPR VFF2GW1YPR VFF2HW1YPR VFF2JV1YPR VFF2JW1YPR VFF2KV1YPR VFF2KW1YPR VFF2LVIYPR VFF2LW1YPR VFF2MV1YPR VFF2MW1YPR VFF2NV1YPR VFF2NW1YPR VFF2PV1YPR VFF2PW1YPR VFF2RV1YPR VFF2RW1YPR VFF2SV1YPR VFF2SW1YPR VFF2TV1YPR VFF2TW1YPR VFF2UV1YPR VFF2UW1YPR

VFF2FW1YDR VFF2GW1YDR VFF2HW1YDR VFF2JV1YDR VFF2JW1YDR VFF2KV1YDR VFF2KW1YDR VFF2LV1YDR VFF2LW1YDR VFF2MV1YDR VFF2MW1YDR VFF2NV1YDR VFF2NW1YDR VFF2PV1YDR VFF2PW1YDR VFF2RV1YDR VFF2RW1YDR VFF2SV1YDR VFF2SW1YDR VFF2TV1YDR VFF2TW1YDR VFF2UV1YDR VFF2UW1YDR

3-Way P								
				Spring Return, A-Port Normally Closed				
	Actuator Features			20 psi				
				Standard	Positioner	Standard	Electro-Pneumatic Solenoid	
	24 Vac						-	
	120 Vac							-
	2-Position Control						-	-
	Modulating Control			-	-			
	2-10 Vdc Control					-		
	0-10 Vdc Control					\bullet		
	4-20 mA Control					\bullet		
	Manual Override					-		
	Conduit Connection						-	-
	Waterproof Enclosure							
	Spring Return			-	-	-	-	-
Valve Size (inches)	$\begin{gathered} \text { Close-Off } \\ \text { (psid) } \end{gathered}$	$\begin{gathered} \text { Cv [kvs] } \\ @ 60^{\circ} \end{gathered}$	$\begin{gathered} \text { Cv [kvs] } \\ @ 90^{\circ} \end{gathered}$					ent-Seat, N
2	175	61 [53]	144 [125]	VFF3FW1Y8P	VFF3FW1YPP	VFF3FW1YXS	VFF3FW1YCS	VFF3FW1Y
2-1/2	175	107 [93]	282 [244]	VFF3GW1Y8P	VFF3GW1YPP	VFF3GW1YXS	VFF3GW1YCS	VFF3GW1Y
3	175	154 [133]	461 [399]	VFF3HW1Y8P	VFF3HW1YPP	VFF3HW1YXS	VFF3HW1YCS	VFF3HW1Y
4	50	$\begin{gathered} 274 \\ {[237]} \end{gathered}$	$\begin{gathered} 841 \\ {[727]} \end{gathered}$	VFF3JV1Y8P	VFF3JV1YPP	VFF3JV1YXS	VFF3JV1YCS	VFF3JV1Y
	175			VFF3JW1Y8P	VFF3JW1YPP	VFF3JW1YXS	VFF3JW1YCS	VFF3JW1Y
5	50	$\begin{gathered} 428 \\ {[370]} \end{gathered}$	$\begin{gathered} 1,376 \\ {[1,190]} \end{gathered}$	VFF3KW1Y8P	VFF3KW1YPP	VFF3KV1YXS	VFF3KV1YCS	VFF3KV1Y
	175			VFF3KW1Y8P	VFF3KW1YPP	VFF3KW1YXS	VFF3KW1YCS	VFF3KW1Y
6	50	$\begin{gathered} 567 \\ {[490]} \end{gathered}$	$\begin{gathered} 1,850 \\ {[1,600]} \end{gathered}$	VFF3KV1Y8P	VFF3KV1YPP	VFF3LV1YXS	VFF3LV1YCS	VFF3LV1Y
	175			VFF3KW1Y8P	VFF3KW1YPP	VFF3LW1YXS	VFF3LW1YCS	VFF3LW1Y
8	50	$\begin{aligned} & 1,081 \\ & {[935]} \end{aligned}$	$\begin{gathered} 3,316 \\ {[2,868]} \end{gathered}$	VFF3KV1Y8P	VFF3KV1YPP	VFF3MV1YXS	VFF3MV1YCS	VFF3MV1Y
	175					VFF3MW1YXS	VFF3MW1YCS	VFF3MW1Y
10	50	$\begin{gathered} 1,710 \\ {[1,479]} \end{gathered}$	$\begin{gathered} 5,430 \\ {[4,697]} \end{gathered}$			VFF3NV1YXS	VFF3NV1YCS	VFF3NV1Y
	175					VFF3NW1YXS	VFF3NW1YCS	VFF3NW1Y
12	50	$\begin{gathered} 2,563 \\ {[2,217]} \end{gathered}$	$\begin{gathered} 8,077 \\ {[6,987]} \end{gathered}$			VFF3PV1YXS	VFF3PV1YCS	VFF3PV1Y
	175					VFF3PW1YXS	VFF3PW1YCS	VFF3PW1Y
14	50	$\begin{gathered} 3,384 \\ {[2,927]} \end{gathered}$	$\begin{aligned} & 10,538 \\ & {[9,115]} \end{aligned}$			VFF3RV1YXS	VFF3RV1YCS	VFF3RV1Y
	150					VFF3RW1YXS	VFF3RW1YCS	VFF3RW1Y
16	50	$\begin{gathered} 4,483 \\ {[3,878]} \end{gathered}$	$\begin{gathered} 13,966 \\ {[12,081]} \end{gathered}$			VFF3SV1YXS	VFF3SV1YCS	VFF3SV1Y
	150							
18	50	$\begin{gathered} 5,736 \\ {[4,962]} \end{gathered}$	$\begin{gathered} 17,214 \\ {[14,890]} \end{gathered}$			VFF3TV1YXS	VFF3TV1YCS	VFF3TV1Y
	150							
20	50	$\begin{gathered} 7,144 \\ {[6,180]} \\ \hline \end{gathered}$	$\begin{gathered} 22,339 \\ {[19,323]} \end{gathered}$			VFF3UV1YXS	VFF3UV1YCS	VFF3UV1Y
	150							
Valve Size (inches)	$\begin{gathered} \text { Close-Off } \\ \text { (psid) } \end{gathered}$	$\begin{gathered} \text { Cv [kvs] } \\ @ 60^{\circ} \end{gathered}$	$\begin{gathered} \text { Cv [kvs] } \\ @ 90^{\circ} \end{gathered}$					Resilient-
2	175	61 [53]	144 [125]			VFF6FW1YXS	VFF6FW1YCS	VFF6FW1Y
2-1/2	175	107 [93]	282 [244]			VFF6GW1YXS	VFF6GW1YCS	VFF6GW1Y
3	175	154 [133]	461 [399]			VFF6HW1YXS	VFF6HW1YCS	VFF6HW1Y
4	50	$\begin{gathered} 274 \\ {[237]} \end{gathered}$	$\begin{gathered} 841 \\ {[727]} \end{gathered}$			VFF6JV1YXS	VFF6JV1YCS	VFF6JV1Y
	175					VFF6JW1YXS	VFF6JW1YCS	VFF6JW1Y
5	50	$\begin{gathered} 428 \\ {[370]} \end{gathered}$	$\begin{gathered} 1,376 \\ {[1,190]} \end{gathered}$			VFF6KV1YXS	VFF6KV1YCS	VFF6KV1Y
	175					VFF6KW1YXS	VFF6KW1YCS	VFF6KW1Y
6	50	$\begin{gathered} 567 \\ {[490]} \end{gathered}$	$\begin{gathered} 1,850 \\ {[1,600]} \end{gathered}$			VFF6LV1YXS	VFF6LV1YCS	VFF6LV1Y
	175					VFF6LW1YXS	VFF6LW1YCS	VFF6LW1Y
8	50	$\begin{aligned} & 1,081 \\ & {[935]} \end{aligned}$	$\begin{gathered} 3,316 \\ {[2,868]} \end{gathered}$			VFF6MV1YXS	VFF6MV1YCS	VFF6MV1Y
	175					VFF6MW1YXS	VFF6MW1YCS	VFF6MW1Y
10	50	$\begin{gathered} 1,710 \\ {[1,479]} \end{gathered}$	$\begin{gathered} 5,430 \\ {[4,697]} \end{gathered}$			VFF6NV1YXS	VFF6NV1YCS	VFF6NV1Y
	175					VFF6NW1YXS	VFF6NW1YCS	VFF6NW1Y
12	50	$\begin{gathered} 2,563 \\ {[2,217]} \end{gathered}$	$\begin{gathered} 8,077 \\ {[6,987]} \end{gathered}$			VFF6PV1YXS	VFF6PV1YCS	VFF6PV1Y
	175					VFF6PW1YXS	VFF6PW1YCS	VFF6PW1Y
14	50	$\begin{gathered} 3,384 \\ {[2,927]} \end{gathered}$	$\begin{aligned} & 10,538 \\ & {[9,115]} \end{aligned}$			VFF6RV1YXS	VFF6RV1YCS	VFF6RV1Y
	150					VFF6RW1YXS	VFF6RW1YCS	VFF6RW1Y
16	50	$\begin{gathered} 4,483 \\ {[3,878]} \end{gathered}$	$\begin{gathered} 13,966 \\ {[12,081]} \end{gathered}$			VFF6SV1YXS	VFF6SV1YCS	VFF6SV1Y
	150							
18	50	$\begin{gathered} 5,736 \\ {[4,962]} \end{gathered}$	$\begin{gathered} 17,214 \\ {[14,890]} \end{gathered}$			VFF6TV1YXS	VFF6TV1YCS	VFF6TV1Y
	150							
20	50	$\begin{gathered} 7,144 \\ {[6,180]} \end{gathered}$	$\begin{gathered} 22,339 \\ {[19,323]} \end{gathered}$			VFF6UV1YXS	VFF6UV1YCS	VFF6UV1Y
	150							

ylon 11-Coated Disks, Lugged Fittings, A-B-AB (Globe Valve) Porting

ES	VFF3FW1YPS	VFF3FW1YDS	VFF3FW1YXR	VFF3FW1YCR	VFF3FW1YER	VFF3FW1YPR	VFF3FW1YDR
ES	VFF3GW1YPS	VFF3GW1YDS	VFF3GW1YXR	VFF3GW1YCR	VFF3GW1YER	VFF3GW1YPR	VFF3GW1YDR
ES	VFF3HW1YPS	VFF3HW1YDS	VFF3HW1YXR	VFF3HW1YCR	VFF3HW1YER	VFF3HW1YPR	VFF3HW1YDR
ES	VFF3JV1YPS	VFF3JV1YDS	VFF3JV1YXR	VFF3JV1YCR	VFF3JV1YER	VFF3JV1YPR	VFF3JV1YDR
ES	VFF3JW1YPS	VFF3JW1YDS	VFF3JW1YXR	VFF3JW1YCR	VFF3JW1YER	VFF3JW1YPR	VFF3JW1YDR
ES	VFF3KV1YPS	VFF3KV1YDS	VFF3KV1YXR	VFF3KV1YCR	VFF3KV1YER	VFF3KV1YPR	VFF3KV1YDR
ES	VFF3KW1YPS	VFF3KW1YDS	VFF3KW1YXR	VFF3KW1YCR	VFF3KW1YER	VFF3KW1YPR	VFF3KW1YDR
ES	VFF3LV1YPS	VFF3LV1YDS	VFF3LV1YXR	VFF3LV1YCR	VFF3LV1YER	VFF3LV1YPR	VFF3LV1YDR
ES	VFF3LW1YPS	VFF3LW1YDS	VFF3LW1YXR	VFF3LW1YCR	VFF3LW1YER	VFF3LW1YPR	VFF3LW1YDR
ES	VFF3MV1YPS	VFF3MV1YDS	VFF3MV1YXR	VFF3MV1YCR	VFF3MV1YER	VFF3MV1YPR	VFF3MV1YDR
ES	VFF3MW1YPS	VFF3MW1YDS	VFF3MW1YXR	VFF3MW1YCR	VFF3MW1YER	VFF3MW1YPR	VFF3MW1YDR
ES	VFF3NV1YPS	VFF3NV1YDS	VFF3NV1YXR	VFF3NV1YCR	VFF3NV1YER	VFF3NV1YPR	VFF3NV1YDR
ES	VFF3NW1YPS	VFF3NW1YDS	VFF3NW1YXR	VFF3NW1YCR	VFF3NW1YER	VFF3NW1YPR	VFF3NW1YDR
ES	VFF3PV1YPS	VFF3PV1YDS	VFF3PV1YXR	VFF3PV1YCR	VFF3PV1YER	VFF3PV1YPR	VFF3PV1YDR
ES	VFF3PW1YPS	VFF3PW1YDS	VFF3PW1YXR	VFF3PW1YCR	VFF3PW1YER	VFF3PW1YPR	VFF3PW1YDR
ES	VFF3RV1YPS	VFF3RV1YDS	VFF3RV1YXR	VFF3RV1YCR	VFF3RV1YER	VFF3RV1YPR	VFF3RV1YDR
ES	VFF3RW1YPS	VFF3RW1YDS	VFF3RW1YXR	VFF3RW1YCR	VFF3RW1YER	VFF3RW1YPR	VFF3RW1YDR
ES	VFF3SV1YPS	VFF3SV1YDS	VFF3SV1YXR	VFF3SV1YCR	VFF3SV1YER	VFF3SV1YPR	VFF3SV1YDR
			VFF3SW1YXR	VFF3SW1YCR	VFF3SW1YER	VFF3SW1YPR	VFF3SW1YDR
ES	VFF3TV1YPS	VFF3TV1YDS	VFF3TV1YXR	VFF3TV1YCR	VFF3TV1YER	VFF3TV1YPR	VFF3TV1YDR
			VFF3TW1YXR	VFF3TW1YCR	VFF3TW1YER	VFF3TW1YPR	VFF3TW1YDR
ES	VFF3UV1YPS	VFF3UV1YDS	VFF3UV1YXR	VFF3UV1YCR	VFF3UV1YER	VFF3UV1YPR	VFF3UV1YDR
			VFF3UW1YXR	VFF3UW1YCR	VFF3UW1YER	VFF3UW1YPR	VFF3UW1YDR

Seat, Nylon 11-Coated Disks, Lugged Fittings, A-AB-B Porting

VFF6FW1YPS
VFF6GW1YPS
VFF6HW1YPS
VFF6JV1YPS
VFF6JW1YPS
VFF6KV1YPS
VFF6KW1YPS
VFF6LV1YPS
VFF6LW1YPS
VFF6MV1YPS
VFF6MW1YPS
VFF6NV1YPS
VFF6NW1YPS
VFF6PV1YPS
VFF6PW1YPS
VFF6RV1YPS
VFF6RW1YPS
VFF6SSV1YPS

VFF6TV1YPS

VFF6UV1YPS

VFF6FW1YDS
VFF6GW1YDS VFF6HW1YDS VFF6JV1YDS VFF6JW1YDS VFF6KV1YDS VFF6KW1YDS VFF6LV1YDS VFF6LW1YDS VFF6MV1YDS VFF6MW1YDS VFF6NV1YDS VFF6NW1YDS VFF6PV1YDS VFF6PW1YDS VFF6RV1YDS VFF6RW1YDS VFF6SV1YDS

VFF6TV1YDS
VFF6UV1YDS

VFF6FW1YXR VFF6GW1YXR VFF6HW1YXR VFF6JV1YXR VFF6JW1YXR VFF6KV1YXR VFF6KW1YXR VFF6LV1YXR VFF6LW1YXR VFF6MV1YXR VFF6MW1YXR VFF6NV1YXR VFF6NW1YXR VFF6PV1YXR VFF6PW1YXR VFF6RV1YXR VFF6RW1YXR VFF6SV1YXR VFF6SW1YXR VFF6TV1YXR VFF6TW1YXR VFF6UV1YXR VFF6UW1YXR VFF6UW1YCR

VFF6FW1YER
VFF6FW1YPR VFF6GW1YPR VFF6HW1YPR VFF6JV1YPR VFF6JW1YPR VFF6KV1YPR VFF6KW1YPR VFF6LV1YPR VFF6LW1YPR VFF6MV1YPR VFF6MW1YPR VFF6NV1YPR VFF6NW1YPR VFF6PV1YPR VFF6PW1YPR VFF6RV1YPR VFF6RW1YPR VFF6SV1YPR VFF6SW1YPR VFF6TV1YPR VFF6TW1YPR VFF6UV1YPR VFF6UW1YPR

VFF6FW1YDR VFF6GW1YDR VFF6HW1YDR VFF6JV1YDR VFF6JW1YDR VFF6KV1YDR VFF6KW1YDR VFF6LV1YDR VFF6LW1YDR VFF6MV1YDR VFF6MW1YDR VFF6NV1YDR VFF6NW1YDR VFF6PV1YDR VFF6PW1YDR VFF6RV1YDR VFF6RW1YDR VFF6SV1YDR VFF6SW1YDR VFF6TV1YDR VFF6TW1YDR VFF6UV1YDR VFF6UW1YDR

GUIDE SPECIFICATION ACTUATED BUTTERFLY VALVE

Valve housing shall consist of polyester-coated cast iron, with a static pressure rating no less than 250 psi at $250^{\circ} \mathrm{F}$. Valve housing shall mount to ANSI Class 125/150 flanges. Valve disk shall consist of Nylon 11 coated cast iron disk. Valve shall have a blow-out proof stem with two EPDM O-rings. Actuated valve shall have resilient tongue-andgroove EPDM combination valve seat and flange seal with minimum, bubble-tight close-off pressure of no less than 150 psi, or no less than 50 psi with undercut disk and two mating flanges. Manually operated valve shall have gear or lever operator with minimum, bubble-tight close-off pressure of no less than 250 psi.

Three-way valve assemblies shall consist of a pair of two-way valves operated by a common actuator and valve linkage. Three way valves shall have a porting configuration of $A-B-A B$ [or: $A-A B-B]$.

Valves will be suitable for control of hot water, or chilled water-glycol mixture up to 50% concentration. Flow control characteristic shall be modified equal percentage.

VALVE ACTUATOR

Actuator shall provide minimum torque required for full valve shut-off position. Wiring terminals or pigtail leads shall be provided for installation to control signal and power wiring.

Electric control valve actuator shall accept analog modulating, floating (tri-state), or two-position line or low voltage signal as indicated in the control sequence. Low voltage and spring return actuators shall be provided by Honeywell. Electric actuator enclosures shall be rated NEMA 2 or NEMA 4X with integral hand-wheel and anti-condensate heater.

Pneumatic control valve actuator shall accept low pressure signal for proportional control, or 20 [or: 80] psi air pressure signal for two-position control in a spring [or non-spring] return configuration. Actuators shall be supplied with optional pneumatic positioner (or: electro-pneumatic solenoid; or: electro-pneumatic servo) interface.

Automation and Control Solutions

In the US:

Honeywell
1985 Douglas Drive North
Golden Valley, MN 55422-3992

In Canada:

Honeywell Limited
35 Dynamic Drive
Toronto, Ontario M1V 4Z9
© 2007 Honeywell International Inc.
customer.honeywell.com

[^0]: *Full cut valves with bi-directional pneumatic actuators.

